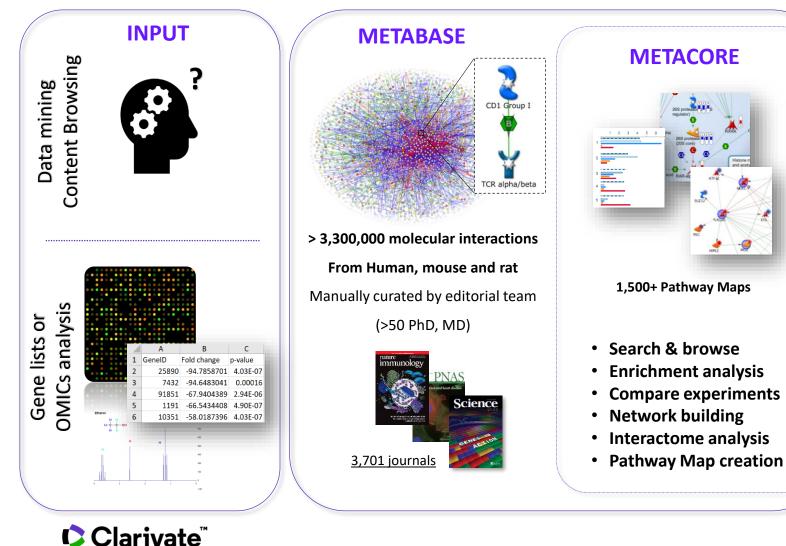


Using MetaCore for multi-omics analysis

Nuria.forns@Clarivate.com

Customer Education Specialist

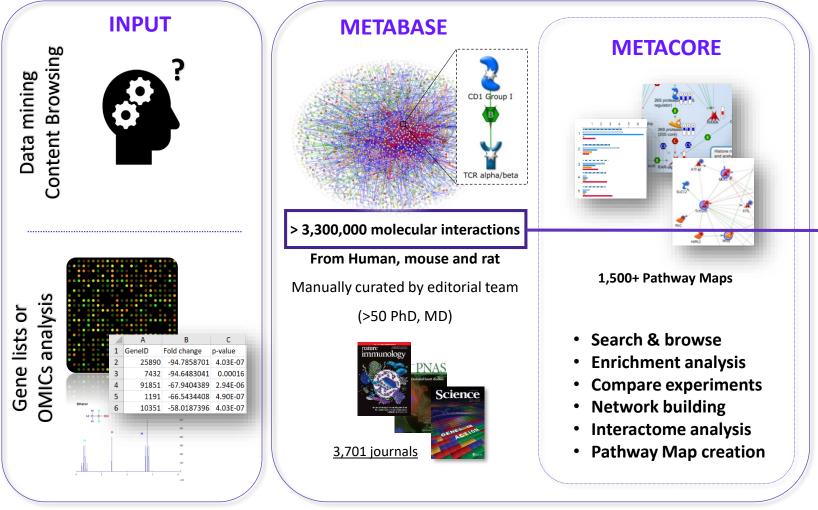
April 2022


Agenda

- 1. Learn:
 - How to approach analyzing multi-omics data in MetaCore.
 - Use metabolic networks (endogenous) enrichment to analyze metabolites and expression data.
 - Find pathways where the metabolic and proteomic data are both involved.
- 2. Questions:
 - What relationships can we find between the metabolic and RNA-seq data?
 - What changes in metabolites and protein concentrations could be biomarkers for disrupted processes?

MetaCore, a Cortellis solution

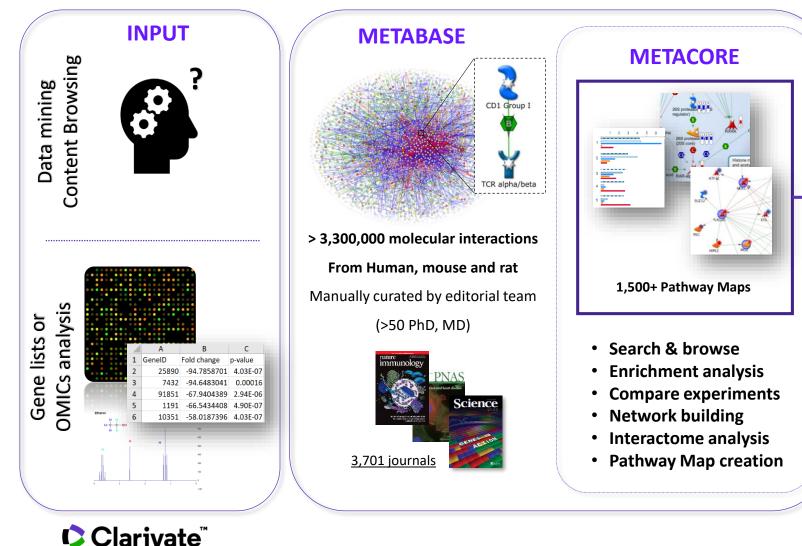
Your GPS in pathway analysis



• Understand omics data in the context of validated biology.

 Generate and confirm hypotheses for novel targets, biomarkers or drug mechanisms of action.

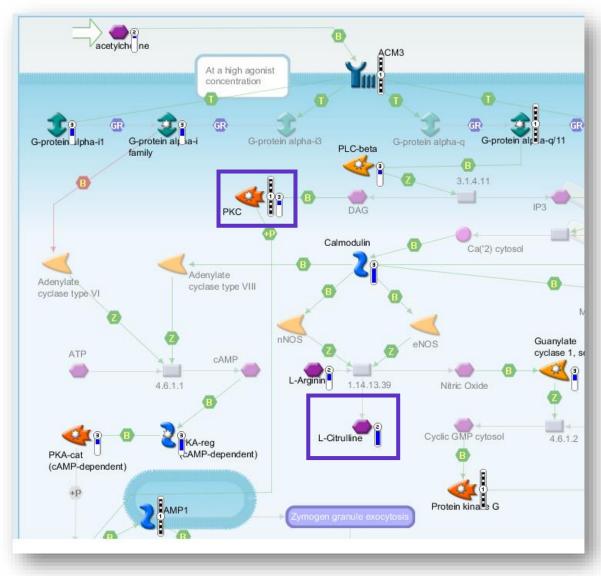
MetaCore, a Cortellis solution


Your GPS in pathway analysis

Туре	Number
All	3,301,030
Protein - Protein	1,455,811
Compound - Protein	1,012,689
Compound - Compound	12,291
Metabolic enzyme - Reaction	62,070
Substrate, Product - Reaction	136,068
RNA - Protein	616,754

MetaCore, a Cortellis solution

Your GPS in pathway analysis


 ~ 1600 canonical and disease signaling pathways

- 250 metabolic networks
- 118 endogenous metabolic networks

Multi-omics simultaneous analysis

Combining metabolomic, transcriptomic and gene variants for side by side –omics enrichment analysis

ou can	upload your experimental data as well a	as list of genes/prot	teins/metabolites.						
	pload Experiments with Gene or Protein	IDs 🕲							
Upload Metabolites									
Upload Interactions									
	bload Structures 🗐								
Up	oload Gene Variants 🔋								
ome b	Active Data								
ome	Name	Type							
		туре							
	Active Data Genetic Variants	VX							
	iabetic metabolites	MX							
	tes vs. Normal Gene Expression	GX							
-		_							
√ E	xperiment name	Species	Network Object						
	T2D Genetic Variants	Homo sapiens	113						
V	V pre diabetic metabolites 18								
	pre diabetic metabolites		18						

Acute kidney injury (AKI) public datasets

- **CAPSOD study** 150 patients with sepsis or pneumonia with varying renal dysfunction.
- Renal dysfunction was classified using the Acute Kidney Injury Network (AKIN) criteria.
 - **AKIO** (no significant increase in serum creatinine) n=65 (control)
 - AKI1 (serum creatinine increase of ≥ 0.3 mg/dl, or 150% to 200% above baseline) n=41
 - AKI2/3 (serum creatinine increase more that 200% above baseline, or ≥ 4.0 mg/dl with an acute increase of at least 0.5 mg/dl) n=20
 - **HD** (Chronic hemodialysis) n=24

HHS Public Access

Author manuscript *Kidney Int.* Author manuscript; available in PMC 2016 April 01.

Published in final edited form as: *Kidney Int.* 2015 October ; 88(4): 804–814. doi:10.1038/ki.2015.150.

Renal systems biology of patients with systemic inflammatory response syndrome

Ephraim L. Tsalik, MD, PhD^{1,2,3}, Laurel K. Willig, MD⁴, Brandon J. Rice, BS^{5,6}, Jennifer C. van Velkinburgh, PhD⁵, Robert P. Mohney, PhD⁷, Jonathan McDunn, PhD⁷, Darrell L. Dinwiddie, PhD^{5,8}, Neil A. Miller, BA⁴, Eric Mayer, MMB, MBA⁷, Seth W. Glickman, MD, MBA⁹, Anja K. Jaehne, MD¹⁰, Robert H. Glew, PhD¹¹, Mohan L. Sopori, PhD¹², Ronny M. Otero, MD^{10,13}, Kevin S. Harrod, PhD¹⁴, Charles B. Cairns, MD⁹, Vance G. Fowler Jr, MD, MHS², Emanuel P. Rivers, MD, MPH¹⁰, Christopher W. Woods, MD, MPH^{2,3,15}, Stephen F. Kingsmore, MB, BAO, ChB, DSc, FRCPath^{4,5,16}, and Raymond J. Langley, PhD^{5,12,16}

Datasets

• Levels of plasma proteins

- Measured with mass spectrometry
- 164 proteins were identified using peptide sequences
- 46 were significantly different from the AKIO control group using ANOVA with 5% false discovery rate correction.

• Levels of plasma metabolites

- Measured with mass spectrometry
- 241 metabolites were annotated
- Clinical assays of serum creatine, capillary lactate, and serum glucose was used to validate the use of the MS data in a semiquantitative fashion.
- 138 annotated metabolites were significantly different from the AKIO control group using ANOVA with 1% false discovery rate correction.

Blood transcriptome

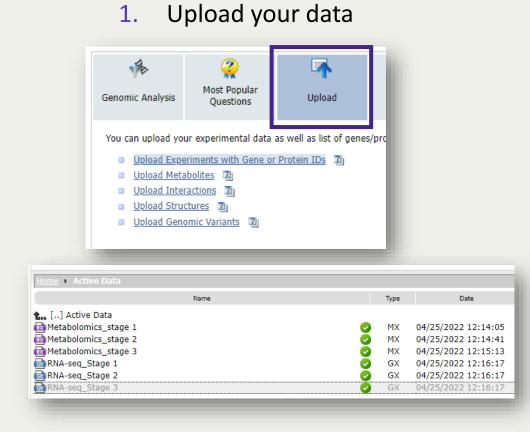
- Measured with RNA-seq
- 133 out of 150 patients were used due to poor insufficient quality.
- 1,997 genes were significantly differentially expressed across all groups using ANOVA with 1% false discovery rate correction.

AKIO (control)

AKI1 Stage 1

AKI2-3 Stage 2

HD Stage 3


TIPS FOR ANALYZING MULTI OMICS DATA

- 1. Calculate enrichment p-values for each experiment independently using the appropriate background list.
- 2. When comparing different omics types, think about how they would be related.
 - Metabolites concentration and transcriptome expression could identify channels and enzymes impacting the metabolites.
 - Proteome abundance and transcriptome expression could be useful for correlating expression to translation.
 - Metabolites and proteome abundance could be useful for **finding biomarkers** from non-invasive mediums.

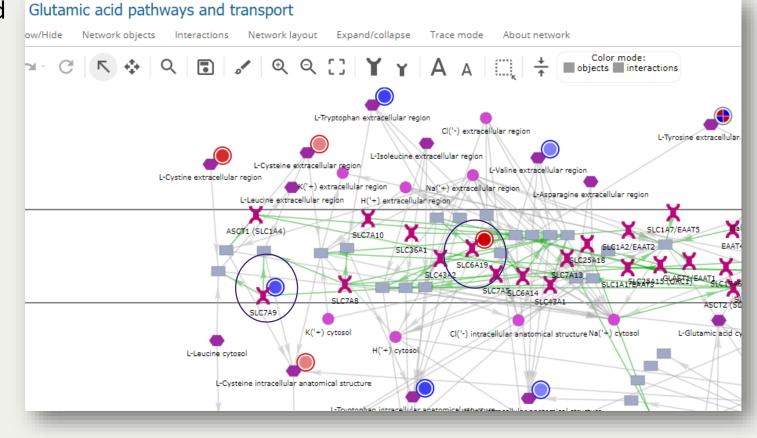
Let's go live

What is the relationship between the metabolomic and expression data?

2. Use metabolic networks (endogenous) to analyze metabolite and transcriptomic data

Genomic Analysis	🔗 Most Popular	Upload	Morkflows &	E One-click Analysis	Build Netwo					
Genomic Analysis	Questions	Opioau	Reports	One-click Analysis	Build Netwo					
Faulther and One				T						
Enrichment Ont					actome 👔					
Scores and ranks e	ntities in functional or	itologies most relevar	it in activated datase	t(s). Detaile	ed analysis of i					
Ontologies					Interactions b					
Pathway Mar	<u>)5</u>				Transcription					
Map Folders					Significant Int					
Process Netv	vorks				Interactome 1					
Diseases (by	Biomarkers)				Enrichment b					
Disease Bion	narker Networks				Interactions E					
Drug Target	Networks				Interactions E					
Toxic Patholo	gies				Davis Las luce					
Drug and Xe	nobiotic Metabolism E	nzymes			<u>Drug Lookup</u>					
Toxicity Netw	vorks			Micro	array Repo					
Metabolic Ne	tworks				Similarity sea					
Metabolic Ne	<u>Metabolic Networks (Endogenous</u> <u>Similarity set</u>									

What is the relationship between the metabolomic and expression data?


 Top 10 networks involved amino acid metabolism and glutamic acid processes.

#	Networks	0	1	2	3	4	5	-log(pValue)	pValue	min(pValue) +	FDR	Ratio
1	1 <u>Glutamic acid pathways and transport</u>								1.093e-7 1.093e-7 1.093e-7	1.093e-7	7.214e-6 7.214e-6 7.214e-6	11/14 11/14 11/14
	-								2.018e-1 1.981e-1 2.018e-1		5.823e-1 5.738e-1 5.823e-1	11/14 9/14 9/14 9/14
2	L-glutamate pathways and transport								4.290e-5 4.290e-5 4.290e-5 7.643e-2 7.455e-2 7.643e-2	4.290e-5	1.416e-3 1.416e-3 2.952e-1 3.212e-1 2.952e-1	8/13 8/13 10/13 10/13 10/13
3	Aminoacid metabolism Ala,Ser,Cys,Met,His,Pro,G metabolism and transport	Ē							1.204e-4 1.204e-4 1.204e-4 4.007e-1 3.949e-1 4.007e-1	1.204e-4	1.987e-3 1.987e-3 8.159e-1 8.185e-1 8.159e-1	9/19 9/19 9/19 10/19 10/19 10/19
4	Lipid metabolism Glycosphingolipid metabolism								1.204e-4 1.204e-4 1.204e-4 4.007e-1	1.204e-4	1.987e-3 1.987e-3 1.987e-3 8.159e-1	9/19 9/19 9/19 10/19

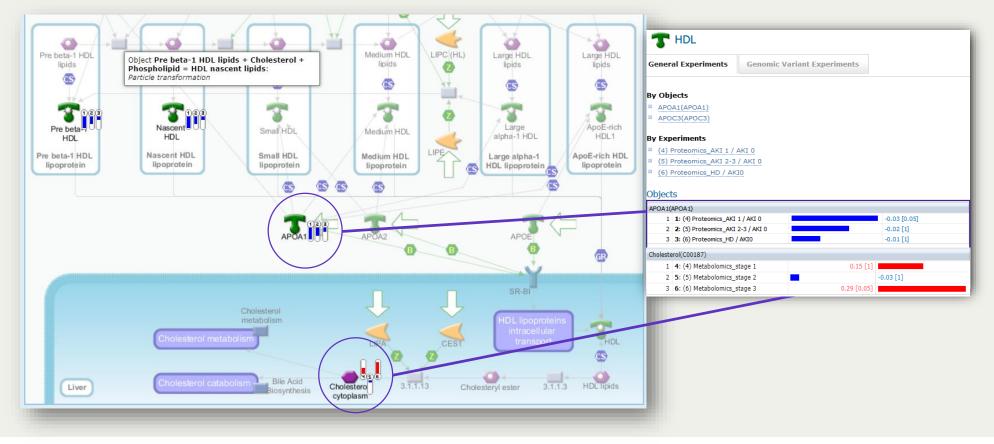
What is the relationship between the metabolomic and expression data?

 Expression changes in SLC7A9 and SLC6A19 could be influencing the dysregulation of amino acid concentrations.

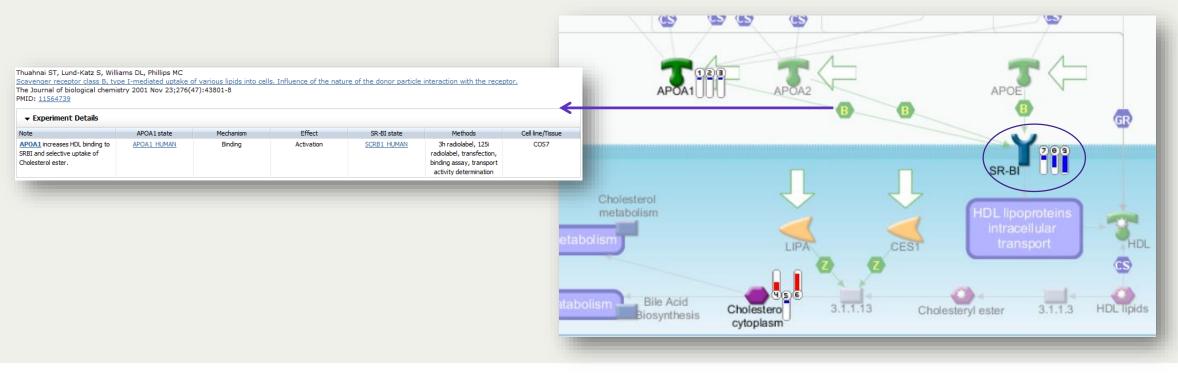
Network Objects	# of Networks containing Network Object
SLC6A19	18
SLC7A9	16
L-Tryptophan intracellular	15
L-Tryptophan extracellular region	14
L-Cysteine intracellular	10
L-Alanine intracellular	8
L-Cysteine extracellular region	8
Glycogen phosphorylase	8
L-Tyrosine intracellular	7
SGK1	7
L-Alanine extracellular region	7
SHMT1	7
PLC-beta	7
Urea intracellular	6

1. Activate metabolomic and proteomic data

Name	Туре
[] Active Data	
Metabolomics_stage 1	🕗 MX
Metabolomics_stage 2	🧔 мх
Metabolomics_stage 3	🧔 мх
Proteomics_Stage 1	🧔 GX
Proteomics_Stage 2	🧔 GX
Proteomics_Stage 3	GX GX

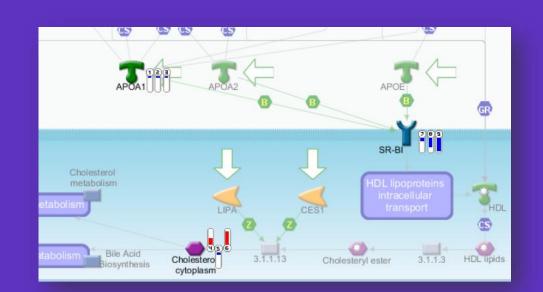

2. Find pathways where both data sets are involved

Genomic Analysis	Most Popular Questions	Upload	Workflows & Reports	Cone-click Analysis					
Enrichment Ontologies (2) Inter Scores and ranks entities in functional ontologies most relevant in activated dataset(s). Detail									
Ontologies Pathway Maps									
Map Folders Process Net									
Image: Disease Biomarker Networks Image: Drug Target Networks									
Toxic Pathol	ogies								


Cholesterol related and complement pathways are both involved with the changes in these datasets

#	Maps	0	1	2	3	4	5	6	7	-log(pValue)	pValue	min(pValue) +	FDR	Ratio
1	Transport Intracellular cholesterol transport										1.279e-9 1.279e-9 1.279e-9 3.962e-2 5.015e-2 5.015e-2	1.279e-9	5.287e-8 5.287e-8 5.287e-8 1.657e-1 1.894e-1 1.894e-1	9/83 9/83 2/83 2/83 2/83
2	Immune response Alternative complement pathway							I			2.750e-1 2.750e-1 2.750e-1 1.514e-6 2.947e-6 2.947e-6	1.514e-6	3.667e-1 3.667e-1 3.667e-1 6.966e-5 1.503e-4 1.503e-4	1/53 1/53 1/53 5/53 5/53 5/53
3	Transport HDL-mediated reverse cholesterol transport										2.315e-3 2.315e-3 2.315e-3 2.163e-5 3.656e-5 3.656e-5	2.163e-5	2.609e-2 2.609e-2 4.975e-4 9.324e-4 9.324e-4	3/44 3/44 3/44 4/44 4/44
4	Cholesterol and Sphingolipid transport / Recycling to plasma membrane in lung (normal and CF)										3.853e-4 3.853e-4	3.853e-4	5.308e-3 5.308e-3	3/24 3/24

✓ APOA1 and Cholesterol levels change with kidney failure



✓ SR-B1 expression appears to decrease as kidney injury worsens and could be indicative of cholesterol metabolism dysregulation.

SUMMARY

- Used metabolomic and RNA-seq analysis and identified channels such as SLC7A9 and SLC6A19 could be playing a role in the transport of amino acids in and out of cells.
- Used metabolomic and proteomic analysis to identify potential biomarkers for disrupted processes.
- Added the RNA-seq analysis to find that a decrease SR-B1 expression (associated to kidney injury) could be indicative of cholesterol metabolism dysregulation.

Network Objects	# of Networks containing Network Object
SLC6A19	18
SLC7A9	16
L-Tryptophan intracellular	15
L-Tryptophan extracellular region	14
L-Cysteine intracellular	10
L-Alanine intracellular	8
L-Cysteine extracellular region	8
Glycogen phosphorylase	8
L-Tyrosine intracellular	7
SGK1	7
L-Alanine extracellular region	7
SHMT1	7
PLC-beta	7
<u>Urea intracellular</u>	6

🗘 Clarivate

Thank you

Nuria.forns@clarivate.com

clarivate.com/cortellis

© 2020 Clarivate. All rights reserved. Republication or redistribution of Clarivate content, including by framing or similar means, is prohibited without the prior written consent of Clarivate. Clarivate and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license.