

MetaCore Accelerating the pace of innovation with trusted content, analytics, and technology

Kinsi Oberoi, Solution Scientist

04/06/2021

Our premier suite of solutions uniquely spans the entire innovation & product lifecycle

Agenda

Metacore Training

- Metacore Overview with live demo session showing how to:
 - Knowledge Mining
 - Upload data
 - Pathway Map Enrichment
 - Network Building
 - Metadrug
 - Q&A

3

MetaCore: Your GPS in Pathway Analysis

 Analyze molecular pathways and accelerate discovery research

🔊 Cortellis

MetaBase/ MetaCore Content Overview

MetaBase	number
Human Genes	61167
Human SwissProt proteins	20430
Mouse genes	72698
Mouse SwissProt proteins	17019
Rat genes	47891
Rat SwissProt proteins	8071
Compounds	891976
Compounds with structure	875221
Endogenous compounds	5448
Nutritional compounds	126
Metabolites of xenobiotic	32389
Drugs	9118
- Biologics	1362
- Small Molecules	7756
- Approved drugs	2290
- Withdrawn drugs	261
- Clinical trial drugs	4993
- Discontinued drugs	1187
- Preclinical drugs	251
- Unknown	136
- Drug combination regimens	8445

MetaCore	number
Human genes in network	25210
Mouse genes in network	22189
Rat genes in network	18780
Chemical compounds	435319
Drugs	4786
Endogenous compounds	3583
Metabolic reactions	40550
Transport reactions	3717
Processing Reactions	4410
Pubmed journals	3717
Pubmed records	2683859
Pubmed articles (unique)	294571
Total amount of interactions	2397073
- Protein – Protein	967668
- Compound – Protein	830890
- Compound – Compound	11699
- Metabolic enzyme -Reaction	51020
- Transporter – Reaction	4787
- Substrate, Product – Reaction	110739
- RNA – Protein	420278
Pathway maps	1578
- Human genes in maps	7750
- Mouse genes in maps	7042
- Rat genes in maps	6930
- Interactions in maps	33153

From Peer-Reviewed Publications to Signaling Pathways

Manual annotation from 3,712 peer-reviewed journals (updated quarterly)

- 290,790 published articles cited with strong experimental evidence
- Team of PhDs & MDs curating for more than 10 years
- Every interaction has directionality, effect, mechanism, and source

Metacore Login Page

https://portal.genego.com/

System Biolo	gy Solutio	ns		Clarivate Analytics
Home Support Train	ing About Us			
Make target identification failure a thing of the past Learn more	Your GPS in P Whether you want to r potential of your biom action, Clarivate Analy	athway Analysi educe the risk in your OM arkers, or establish a targ tics has the right solutior	S IICs analysis, realize the get's mechanism of n for you.	LOGIN Username koberoi Password
"Something that I do with MetaCore in one afternoon now. would	MetaCore High quality biological systems content in context, giving you essential data and analytical tools to	MetaMiner Partnerships A series of industry- academy partnerships on systems biology of common human	MetaDrug A leading systems pharmacology solution that incorporates extensive manually curated information on	 Remember me LOGIN Forgot your password?
have taken a week before." Dr. Charles Lecellier Principal Investigator IGMM	accelerate your scientific research.	diseases and stem cells, led by Clarivate Analytics.	biological effects of small molecule compounds.	

Contact Us

© 2018 Clarivate Analytics Privacy Cookie Policy Data Usage Terms of Use Copyright

GSE95153- Combining BET and MEK inhibitors synergistically targets NRAS mutant Melanoma

- Platform :Illumina NextSeq 500 (Homo sapiens)
- P value 0.05, Threshold 1
- Comparison: untreated

DMSO-treated JQ1-treated (BET inhibitor) PD901-treated (MEK inhibitor) JQ1+PD901-combination treated

Question?

1. The impact of MEK inhibition of Signaling pathways in Melanoma?

2. Hypothesizing the relationship between the JQ/D and PD/D single treatments with the combo/D treatments?

Knowledge Mining

Do Ez search to find information related to Melanoma

🔊 Cortellis

What can I learn about genes being overly expressed in Melanoma?

			Ca	ausal Assoc	iations (by Gene)										
													highlight text	0/	/0 4	۶.
											Result	pages: 1	2 3 • 171 (S	howing results 1 to 2	 20 of 34	19)
			#	Gene	Alteration Level	Alteration Type	Alteration Subtype	Details	Abundance	Activity/Gain/Loss of Function	Normal/Pathology Concentration	Subcellular Localization	Organ/Tissue Distribution	Disease	Info	o
			11	<u>10F1</u>	DNA IEVEI	Gene rearrangements	STR/ VINKT	10F1_DOMAN_C. (CA)19		uown		change	DIUUU	<u>meiarioma,</u> <u>Cutaneous</u> <u>Malignant</u>		^
			12	<u>TP53</u>	DNA level	Haplotype/SNP		TP53_HUMAN_c.860A>G(G)					Melanocytes	Melanoma, Cutaneous Malignant	>	
	Melanoma	1	13	BPIFA3	DNA level	Haplotype/SNP		BPIFA3_HUMAN_rs17305657(T)					Blood	Melanoma, Cutaneous Malignant	>	
000	Melanoma		14	TGFA	DNA level	Locus change		TGFA HUMAN locus change 2p13					Melanocytes	Melanoma	-	
			15	Ba KIT	DNA level	Haplotype/SNP		KIT HUMAN c.1673A>G(G)					Melanocytes, Skin	<u>Melanoma</u>	>	ł
	Disease 🚽 🚽 Export	🕴 Build	16	MMP28	DNA level	Haplotype/SNP		MMP28 HUMAN c.728G>C(C)					Melanocytes	Melanoma	-	
			17	HLA-DRB3, HLA-DRB1	DNA level	Haplotype/SNP		HLA-DRB1 HUMAN DRB1*1103					Leukocytes	Melanoma	>	
			18	BE BRAF	DNA level	Haplotype/SNP		BRAF_HUMAN_rs121913227(GT) / BRAF_HUMAN_rs121913227((A)2)					Melanocytes	Melanoma	>	
			19	RASEF	DNA level	Epigenetics	Methylation	RASEF HUMAN Methylation	up				Uvea	Melanoma, Uveal	۲	~
Table	of Contents		20	Bi KIT	DNA level	Haplotype/SNP		KIT HUMAN c.1672A>G(G)					Melanocytes	Melanoma	>	
Sur Cau	nmary usal Associations (by Gene)															

Causal Associations (by Gene) Causal Associations (Endogenous Compounds) Drugs & Therapeutic Agents Pathway Maps

Cortellis[®]

Upload data

Upload data into Metacore

Pathway Map Enrichment

Which maps are significantly enriched

What overall process is impacted when comparing single treatment vs. combo treatment ?

Ratio of differentially expressed genes from <u>dataset</u> (**GREEN**) over all network objects in folder (**RED**)

Graphical representation of -log(pValue)

						/						
#	Map folders	0	5	10	15	20	25	-log(pValue)	pValue	min(pValue) 🕈	FDR	Ratio
1	Cell cycle and its regulation								1.291e-29 1.014e-33 2.336e-28	1.014e-33	8.648e-28 6.792e-32 1.565e-26	107/991 105/991 123/991
2	Colorectal Neoplasms								8.797e-20 3.864e-22 6.222e-27	6.222e-27	1.965e-18 8.629e-21 2.084e-25	124/1660 118/1660 164/1660
3	Lung cancer						_		1.661e-20 3.838e-22 1.824e-26	1.824e-26	5.565e-19 8.629e-21 4.074e-25	150/2213 140/2213 195/2213
4	<u>Melanoma</u>								8.908e-17 2.183e-17 4.263e-23	4.263e-23	1.194e-15 2.089e-16 7.141e-22	119/1691 110/1691 158/1691
Mai	o folder name						Sig	nificance	of overla	p of differe	entially	

expressed genes in the folder

Marked difference in the presence of differentially expressed genes between single treatment and combo treatment in Melanoma Map folder

What pathways are disrupted by the differentially expressed genes?

Kinase such as Aurora-B are significantly down regulated in Combo/D treatment compared to JQ /D and PD/D single group in Melanoma progression pathway map

Compare Experiment

Compare experiment workflow

Question:

What process is impacted when comparing patient groups?

What process is impacted when comparing patient groups ?

Experiment name			Species	Network Objects				
MelanomaDataset_JQ/	D fold		Homo sapiens	889				
MelanomaDataset_PD/	D fold		Homo sapiens	777				
MelanomaDataset_Cor	nbo/D fold		Homo sapiens	1200			c	
Unique 0 244	Similar 246			Common 710		Ratio o differen exprese from d	f ntially sed ge atase N) ove	' enes t er all
			Gra of –	phical represe -log(pValue)	ntation	netwo in folde	r k obj er (<mark>RE</mark>	ects D)
# Maps	-		+ 0 2.5	5 7.5 10 12.5 15 17.5 20	-log(pValue) pVa	ue pValue	FDR	Ratio
Aperrant B-Kar signaling in melanoma progressio	<u>n</u>				6.480 1.000e 1.000e 3.480	+0 6.480e-5 +5 +0 e-1	1.000e+0 3.237e-3 1.000e+0 1.000e+0 4.223e-1	0/55 8/55 0/55 1/55
2 Abnormalities in cell cycle in SCLC					1.937 2.356 1.000e 1.000e 2.095	+1 2.356e-8 +8 +0 +0 e-2	3.722e-1 3.007e-6 1.000e+0 1.000e+0 2.374e-1	1/29 9/29 0/29 0/29 2/29
3 Anti-apoptotic action of ErbB2 in breast cancer					1.000e 2.706 1.000e	+0 2.706e-4 3-4 +0	1.000e+0 8.404e-3 1.000e+0	0/51 7/51 0/51
	Март	name	 Signi expr	ificance of over essed genes in	lap of di the Map	 fferentia	ally	

Build Network for your Experimental Data

Network Building

Hypothesizing mechanisms of action behind MEK inhibitors by building network

Learn More

- You can learn more about upcoming webinars by going on to Help tab, Tutorials&Training, on MetaCore's start page
- Look for Pendo on left corner of landing page introduced earlier last month to help deliver a great product experience

Start Page Applications 🗸	Help - User: koberoi	i 🕶
File Edit View Tools	Glossa ry Help	
율 🏚 💼 💁 😎	Questions & Answers	
Home My Data STRUCT	Integrations	
Name	Tutorials & Training	I
🚞 Breast cancer subty	Customer Care	0
Iung canser vs norm Variant Dataset-Rim	Report a Bug	0
GSE56323_Lin28 sus	stains early re	0

Screen caption

What would be covered in advanced training session

Pick topic for next session

- 1. Find Key Hubs using Over-Connectivity Analysis
- 2. Network building
- 3. Using Microarray repository for gene comparisons against public data
- 4. Constructing your own pathway maps
- 5. Analyzing multi-omics data (RNA-seq, proteomics, metabolomics, etc)

Training session details:

Please join us in this <u>hands-on training session</u> to learn further insights about the Clarivate MetaCore resource.

- <u>Date:</u> Tue April 13, 2021
 - <u>Time:</u> 12pm 1.30pm

Based on your feedback during the first introductory MetaCore session on April 6th, we have designed a tailored training to cover your main areas of interest.

Come to this hands-on Advanced session to learn:

- How to work with multi-omics data.
- How to upload metabolite data.
- How to run enrichment analysis.

Cortellis

Don't forget to bring your questions with you!

Host: Kinsi Oberoi Solution Scientist Clarivate

A Clarivate Analytics solution

Thank you

Kinsi Oberoi <u>Kinsi.oberoi@Clarivate.com</u>

© 2019 Clarivate Analytics. All rights reserved. Republication or redistribution of Clarivate Analytics content, including by framing or similar means, is prohibited without the prior written consent of Clarivate Analytics. Cortellis and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license.