

MetaCore Advanced Training Session

Kinsi Oberoi, Solution Scientist

4/13/2020

Our premier suite of solutions uniquely spans the entire innovation & product lifecycle

Agenda

Metacore Training

- Metacore Overview with live demo session showing how to:
 - Introduction to Key Pathway Advisor
 - Analyzing multi-omics data (RNA-seq, proteomics, metabolomics, etc)
 - Q&A

Key Pathway Advisor

Cortellis

Key Pathway Advisor

Output

- gene expression.
- Impact on pathway maps.

Key hubs regulating

Key Hub

Step 2

Supportive Data

Conflicting Data

2

1 4 4

Activation

Step 1

Predict key molecules in your data that may be causative for the changes observed (causal reasoning network analysis)

Gain molecular understanding of disease

Analyse expression data to in the context of validated biological interactions and pathways. Generate causal networks and confirm hypotheses for targets and mechanisms of action

KEY HUBS

* Actived or Overconnected object * Inhibited object

Power analytics – causal reasoning

 Chindelevitch L, Ziemek D, Enayetallah A, Randhawa R, Sidders B, et al. (2012) Causal reasoning on biological networks: interpreting transcriptional changes. Bioinformatics 28: 1114-1121.
 Pollard J Jr, Butte AJ, Hoberman S, Joshi M, Levy J, Pappo J. (2005) A computational model to define the molecular causes of type 2 diabetes mellitus. Diabetes Technol Ther. 2005 Apr;7(2):323-36.

Prior knowledge

KEY HUBS

Actived or Overconnected object

Inhibited object

Associate results with known drug targets and biomarkers

Differentially expressed genes (DEGs)

biomarkers

Has this gene been associated with other similar indications or is it unique to my indication?

Cortellis

Powerful analytics – synergy enrichment

Formatting and uploading data

Analysis Settings

	2 Analysis Settings
	Report Name colorectal_vs_relapsefree_gx_1
Analysis Settings	X Prior Knowledge Data Putative Biomarkers Drug Targets
Processes Ontologies	Select all Default Processes Ontologies
✓ Key Pathway Maps	- Key Pathway Maps - Diseases
 ✓ Diseases GO Processes ✓ Process Networks GO Molecular Functions 	- Process Networks - Pathway Groups Find overlap of results
✓ Pathway Groups	with information from
Advanced Settings	curated literature
Synergy Enrichment Results	
0.05 P-value threshold SPIA	Edit Settings 🗹 Use Default
Key Hubs Algorithm	Run analysis
Causal Reasoning O.01 P-value thresho	old
Cancel Save	e changes

Use HTML Interface to export results

Multi-Omics Analysis

Metacore Login Page

https://portal.genego.com/

System Biolo	gy Solutio	ns		Clarivate Analytics
Home Support Train	ning About Us			
Make target identification failure a thing of the past Learn more	Your GPS in P Whether you want to r potential of your biom action, Clarivate Analy	athway Analysi educe the risk in your OM arkers, or establish a targ tics has the right solutior	S IICs analysis, realize the get's mechanism of h for you.	LOGIN Username koberoi Password
Clarivate Analytics	MetaCore High quality biological systems content in context, giving you essential data and analytical tools to	MetaMiner Partnerships A series of industry- academy partnerships on systems biology of common human	MetaDrug A leading systems pharmacology solution that incorporates extensive manually curated information on	 Remember me LOGIN Forgot your password?
have taken a week before." Dr. Charles Lecellier Principal Investigator IGMM	accelerate your scientific research.	diseases and stem cells, led by Clarivate Analytics.	biological effects of small molecule compounds.	

Contact Us

© 2018 Clarivate Analytics Privacy Cookie Policy Data Usage Terms of Use Copyright

Multi-omics analysis in MetaCore. Use case

- Cohort of 150 patients from CAPSOD study with varying renal dysfunction in patients • with sepsis or pneumonia.
- Renal dysfunction was classified using the Acute Kidney Injury Network (AKIN) criteria. •
 - AKIO (no significant increase in serum creatinine) n=65 0
 - AKI1 (serum creatinine increase of ≥ 0.3 mg/dl, or 150% to 200% above baseline) n=41 0
 - AKI2/3 (serum creatinine increase more that 200% above baseline, or \geq 4.0 mg/dl with an acute increase of 0 at least 0.5 mg/dl) n=20
 - Chronic hemodialysis (HD) n=24 0

HHS Public Access

Kidney Int. Author manuscript; available in PMC 2016 April 01.

Published in final edited form as: Kidney Int. 2015 October ; 88(4): 804-814. doi:10.1038/ki.2015.150.

Renal systems biology of patients with systemic inflammatory response syndrome

Ephraim L. Tsalik, MD, PhD^{1,2,3}, Laurel K. Willig, MD⁴, Brandon J. Rice, BS^{5,6}, Jennifer C. van Velkinburgh, PhD⁵, Robert P. Mohney, PhD⁷, Jonathan McDunn, PhD⁷, Darrell L. Dinwiddie, PhD^{5,8}, Neil A. Miller, BA⁴, Eric Mayer, MMB, MBA⁷, Seth W. Glickman, MD, MBA⁹, Anja K. Jaehne, MD¹⁰, Robert H. Glew, PhD¹¹, Mohan L. Sopori, PhD¹², Ronny M. Otero, MD^{10,13}, Kevin S. Harrod, PhD¹⁴, Charles B. Cairns, MD⁹, Vance G. Fowler Jr, MD, MHS², Emanuel P. Rivers, MD, MPH¹⁰, Christopher W. Woods, MD, MPH^{2,3,15}, Stephen F. Kingsmore, MB, BAO, ChB, DSc, FRCPath^{4,5,16}, and Raymond J, Langley, PhD^{5,12,16}

Multi-omics analysis in MetaCore. Use case dataset

- -Mass spectrometry was used to measure the levels of 370 plasma metabolites
 - 241 metabolites were annotated
 - Clinical assays of serum creatine, capillary lactate, and serum glucose was used to validate the use of the MS data in a semiquantitative fashion.
 - 138 annotated metabolites were significantly different from the AKIO control group using ANOVA with 1% false discovery rate correction.
- -Mass spectrometry was used to measure the levels of plasma proteins
 - 164 proteins were identified using peptide sequences
 - 46 were significantly different from the AKIO control group using ANOVA with 5% false discovery rate correction.
- -RNA-seq was used to measure the blood transcriptome
 - 133 out of 150 patients were used due to poor insufficient quality.
 - 1,997 genes were significantly differentially expressed across all groups using ANOVA with 1% false discovery rate correction.

Multi-omics analysis in MetaCore

- Upload Experiments with Gene or Protein IDs 2
- Upload Metabolites 2
- Upload Interactions 1
- Upload Structures 21
- Upload Genomic Variants 2

Genomic Analysis	Most Popular Questions	Upload	Workflows & Reports	One-click Analysis	Build Network	Custom Content	Predict Compound Activity (MetaDrug)	<
Enrichme	nt Ontologies 🕴	2)		Interac	tome 🕲			
Scores and activated da	ranks entities in fur itaset(s).	nctional ontologi	es most relevant in	Detailed a lists	nalysis of interact	ion space for ac	tivated datasets and g	gene
Ontologie	s			Int	eractions by Prote	in Function		
Pathy	vay Maps			■ <u>Tra</u>	nscription Factors			
🖏 <u>Map I</u>	Folders			Sig	nificant Interaction	ns Within Set(s)		
Proce	ss Networks			Int	eractome Topolog	¥		
Jisea	ses (by Biomarkers	<u>s)</u>		En:	ichment by Protei	n Function		
Jisea	se Biomarker Netw	<u>iorks</u>		Int	eractions Between	<u>n Datasets (all)</u>		
🖏 Drug	Target Networks			Int	eractions Between	<u>Datasets (TR)</u>		
Toxic	Pathologies			Dn	a Lookup for You	r Data 🕅		
🐴 Drug	and Xenobiotic Me	tabolism Enzyme	<u>25</u>	- 01	19 200 Kup 101 104			
Toxic	ity Networks			Microar	ray Repository	· 🖾		
🐴 Metal	oolic Networks			Sin	nilarity search by C	Genes 😰		
🐴 Metal	bolic Networks (End	<u>dogenous)</u>		Sin	nilarity search by F	Functional Descri	iptors 🕲	
Public On	tologies							
壻 <u>GO P</u>	rocesses							
🐴 <u>GO M</u>	lolecular Functions							
🗔 GO Lo	ocalizations							

Upload metabolomic data

Find pathways where the metabolic and proteomic data are both involved

Enrichment analysis

Enrichment Ontologies 2 Scores and ranks entities in functional ontologies most relevant in activated dataset(s). Ontologies Diseases (by Biomarkers) Diseases (by Biomarkers) Diseases (by Biomarkers) Disease Biomarker Networks Drug Target Networks Drug Target Networks Drug and Xenobiotic Metabolism Enzymes Disease Disease Drug and Xenobiotic Metabolism Enzymes

Find pathways where the metabolic and proteomic data are both involved

Find pathways where the metabolic and proteomic data are both involved

Pathway Maps	Network Objects			
🕈 Export 🛛 🖳 I	Export to image Reorder enrichment profile			Total results: all •
1 Transpor	nt Intracellular cholesterol transport	5 6 7 -log(pValue	 pValue min(pValu 3.529e-9 3.529e-9 3.529e-9 3.529e-9 3.388e-2 4.298e-2 4.298e-2) + FDR Ratio 2-9 1.059e-7 9/83 1.059e-7 9/83 1.059e-7 9/83 1.482e-1 2/83 1.735e-1 2/83 1.735e-1 2/83
2 Immune	a response Alternative complement pathway	_	3.004e-1 9.950 3.004e-1 3.004e-1 9.950e-7 1.940e-6 1.940e-6	2-7 3.961e-1 1/53 3.961e-1 1/53 3.961e-1 1/53 4.925e-5 5/53 1.057e-4 5/53 1.057e-4 5/53
3 <u>Myeloid-</u>	-derived suppressor cells and M2 macrophages in cancer		4.008e-6 4.008 4.008e-6 4.008e-6 2.014e-1 2.260e-1 2.260e-1	2-6 5.741e-5 6/64 5.741e-5 6/64 5.741e-5 6/64 2.484e-1 1/64 2.737e-1 1/64 2.737e-1 1/64
4 <u>Transpor</u>	rt HDL-mediated reverse cholesterol transport		3.207e-2 1.281 3.207e-2 3.207e-2 1.281e-5 2.170e-5	2-5 1.242e-1 2/42 1.242e-1 2/42 1.242e-1 2/42 3.171e-4 4/42 5.915e-4 4/42

 Cholesterol-related pathways appear as relevant

Overlay RNA-seq data to complete the picture

3

- 1	Home Active Data				
	Name		Type	Date	‡ 👳
	AKI1 vs AKI0 AKI2-3 vs AKI0 AKI2-3 vs AKI0 AKI1 vs AKI0 AKI1 vs AKI0 prot AKI2-3 vs AKI0 prot HD vs AKI0 prot	000000	MX MX MX GX GX GX	08/17/2017 14:47:55 08/17/2017 14:48:30 08/17/2017 14:49:15 08/17/2017 14:55:53 08/17/2017 14:56:50 08/17/2017 14:57:19	-
-	AKI2-3 vs AKI0 RNA	ö	GX	08/17/2017 16:45:20	
	🛛 AKI1 vs AKI0 RNA	0	GX	08/17/2017 16:44:22	

Generate your hypothesis

Learn More

- You can learn more about upcoming webinars by going on to Help tab, Tutorials&Training, on MetaCore's start page
- Look for Pendo on left corner of landing page introduced earlier this month to help deliver a great product experience

Start Page Applications 🗸	Help - User: koberoi	-
File Edit View Tools	Glossa ry Help	
🐣 🕭 🔁 👁 🐺	Questions & Answers	
Home + My Data + STRUCT	Integrations	
Name	Tutorials & Training	
🚞 Breast cancer subty	Customer Care	0
Iung canser vs norm Variant Dataset-Rim	Report a Bug	0
_ 🗋 GSE56323_Lin28 sus	tains early re	0

Screen caption

A Clarivate Analytics solution

Thank you

Kinsi Oberoi Kinsi.oberoi@Clarivate.com

© 2019 Clarivate Analytics. All rights reserved. Republication or redistribution of Clarivate Analytics content, including by framing or similar means, is prohibited without the prior written consent of Clarivate Analytics. Cortellis and its logo, as well as all other trademarks used herein are trademarks of their respective owners and used under license.